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COMPENDIUM ON CARDIOPULMONARY DISEASE AND EXERCISE: 
MOLECULAR TO CLINICAL MECHANISMS 

Exercise in Inherited Cardiomyopathies: 
Optimizing the Dose-Response Curve
Eleanor E. Rye , Amy M. Mitchell , Celine F. Santiago , Andre La Gerche , Diane Fatkin

ABSTRACT: Exercise is generally considered beneficial for cardiovascular health, but for patients with inherited 
cardiomyopathies, exercise can be a source of anxiety due to concerns about arrhythmia risk and disease progression. In the 
general population, exercise avoidance can impact cardiometabolic health and diminished fitness is a risk factor for heart 
failure. At the other extreme, sustained high levels of exercise in competitive endurance athletes have been associated with 
an increased risk of some arrhythmias. Defining optimal threshold levels for exercise participation is not straightforward 
and one-size-fits-all recommendations are unlikely to be successful. In the context of inherited cardiomyopathies, the 
impact of exercise on myocardial function and arrhythmias depends on factors such as exercise frequency, intensity, and 
duration, as well as the type of cardiomyopathy, underlying genotype, and other unique intrinsic traits in each individual. 
This review outlines current knowledge with respect to the impact of exercise in hypertrophic, arrhythmogenic, and dilated 
cardiomyopathies based on studies in human cohorts and animal models. Several disease-specific and genotype-specific 
risk factors are highlighted, although our understanding of these factors remains incomplete. Importantly, although 
exercise activities remain restricted for those with high-risk features, emerging evidence suggests that moderate-to-high 
levels of exercise may be safe and beneficial for many patients. Harnessing the cardioprotective power of exercise holds 
enormous promise for expanding personalized strategies for cardiomyopathy treatment and prevention.
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Inherited cardiomyopathies are a group of primary myo-
cardial disorders associated with an increased risk 
of cardiac arrhythmias, heart failure (HF), stroke, and 

sudden cardiac death (SCD). These disorders are classi-
fied by their phenotypic features, with the most common 
types being hypertrophic cardiomyopathy (HCM), dilated 
cardiomyopathy (DCM), and arrhythmogenic cardiomy-
opathy (ACM). Substantial progress has been made in 
elucidating the genetic underpinnings of inherited car-
diomyopathies and genetic testing to identify causative 
rare variants is now routinely performed. Increasingly, 
however, there is recognition that additional patient-
related and exogenous factors influence disease mani-
festation in genotype-positive individuals.

Regular physical activity is generally considered ben-
eficial for cardiovascular health with favorable effects on 

blood pressure, body weight, lipid profiles, insulin sensitiv-
ity, endothelial function, adverse events related to coronary 
artery disease, and longevity.1 Current American Heart 
Association guidelines recommend that adults undertake 
at least 150 minutes of moderate-intensity or 75 minutes 
of vigorous-intensity aerobic exercise per week.2 For fami-
lies with inherited cardiomyopathies, the safety of exercise 
participation is a frequent dilemma with a relative paucity 
of guiding evidence. Concerns that exercise might accel-
erate cardiac dysfunction or trigger arrhythmias have led 
to physician hesitancy and patient reluctance to engage in 
physical activity. Consequently, many individuals opt for a 
sedentary lifestyle that in itself can be disease-promoting.  
In recent years, there has been a shift in thinking and 
greater appreciation of the value of exercise; however, the 
subject remains controversial.
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Exercise dose per se is not the only consideration, with 
several factors contributing to the myocardial exercise 
response. In the context of inherited cardiomyopathies, this 
includes clinical determinants of cardiac size and function 
such as an individual’s age and sex, cardiomyopathy type, 
genotype, phenotype, comorbidities, and lifestyle. In this 
review, we will outline current perspectives on the role of 
exercise in inherited cardiomyopathies and the aspiration 
toward personally tailored exercise prescriptions.

QUANTIFYING EXERCISE EXPOSURE
Individual exercise burden is determined by the frequency, 
intensity, time, and type of physical activity performed 

over time. Physical activities can be broadly categorized 
according to the type of hemodynamic stress imposed 
on the cardiovascular system. Classification exists on 
a continuum of relative intensity of the required static 
component (defined by the percentage of maximal vol-
untary skeletal muscle contraction) and dynamic compo-
nent (defined by the percentage of peak oxygen uptake 
[VO2peak]). High-dynamic activities involve repetitive 
isotonic skeletal muscle contraction that necessitates an 
increase in cardiac output, respiratory rate, and oxygen 
uptake. The intensity of high-dynamic activities similarly 
exists on a spectrum ranging from low to vigorous. Inten-
sity can be expressed in absolute terms using standard-
ized metrics such as the metabolic equivalents (METs), 
defining the metabolic cost of an activity as a multiple 
of resting energy expenditure. However, this does not 
account for the variability in individual cardiorespiratory 
fitness. Alternatively, exercise intensity can be expressed 
relative to individual capacity, represented as a percent-
age of VO2peak, maximal heart rate, heart rate reserve, or 
the subjective rate of perceived exertion. The extremes of 
exercise participation are readily recognized, ranging from 
individuals with sedentary lifestyles (typically engaged 
in activities equal to 1.0–1.5 METs) to elite competitive 
athletes (engaged in activities up to 25 METs). Care is 
needed when interpreting the literature on the risks ver-
sus benefits of exercise in inherited cardiomyopathies, as 
criteria used to define exercise levels and experimental 
protocols have varied widely.

EFFECTS OF EXERCISE IN THE NORMAL 
HEART
The body responds to exercise with a tightly coordinated 
suite of physiological adaptations that act to meet elevated 
oxygen and metabolic demands.3 During acute bouts 
of exercise, there is increased ventilation, withdrawal of 
the parasympathetic nervous system, and activation of 
the sympathetic nervous system which, in combination, 
increases heart rate and ventricular contraction. Cardiac 
output increases, resulting in elevated blood pressure and 
flow throughout the enclosed systemic vascular network. 
Vasodilation and changes in vascular resistance help to 
redistribute blood to exercising skeletal muscle. Over time, 
sustained exercise training results in structural and func-
tional changes in both heart and skeletal muscle. Cardiac 
changes include slower resting heart rate, reduced ventric-
ular stiffness, chamber dilatation, increased stroke volume, 
and physiological hypertrophy.3 These features are pre-
dominantly seen with endurance rather than static forms 
of exercise and vary with the type and magnitude of the 
hemodynamic load. Exercise-induced cardiac remodeling 
has been mainly studied in elite endurance athletes (ath-
lete’s heart). Similar, albeit less marked, remodeling has 
been seen in sedentary middle-aged subjects after 12 to 

Nonstandard Abbreviations and Acronyms

ACM arrhythmogenic cardiomyopathy
CREBH  cAMP-responsive element-binding  

protein H
DCM dilated cardiomyopathy
ERK extracellular signal–regulated kinase 
G+P− genotype-positive, phenotype-negative
HCM hypertrophic cardiomyopathy
HF heart failure
ICD implantable cardioverter defibrillator
IGF-1 insulin-like growth factor 1
LINC linker-of-nucleoskeletonand-cytoskeleton
LV left ventricle
LVEF left ventricular ejection fraction
LVOTO left ventricular outflow tract obstruction
MACE major adverse cardiac events
MAPK mitogen-activated protein kinase
MET metabolic equivalent
mTOR mammalian target of rapamycin
NFAT nuclear factor of activated T cell
NYHA New York Heart Association
PDGF platelet-derived growth factor
PEVK proline-glutamatevaline-lysine
PGC-1α  peroxisome proliferator-activated 

receptor-gamma coactivator
PPARγ  peroxisome proliferator-activated 

 receptor gamma
PI3K phosphoinositide 3-kinase
RV right ventricle
SCD sudden cardiac death
TGF transforming growth factor
TTNtv truncating variants in the TTN gene
VA ventricular arrhythmia
VO

2peak peak oxygen uptake
Wnt wingless-related integration site
YAP Yes-associated protein
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24 months of exercise training.4 Skeletal muscle adapta-
tions include increases in mitochondrial function and oxi-
dative capacity that enhance aerobic muscle contraction.5

At the cellular level, exercise training results in 
increased cardiomyocyte mitochondrial biogenesis asso-
ciated with activation of AMP-activated protein kinase 
and production of PGC-1ɑ (peroxisome proliferator- 
activated receptor-gamma coactivator).3 Enhanced mito-
chondrial function has a key role in maintaining fatty acid 
oxidation rather than glucose utilization as the predomi-
nant energy source and protects against oxidative stress. 
In addition, exercise has anti-inflammatory actions and 
attenuates ischemia-induced apoptosis and autophagy.5 
Circulating myokines released from skeletal muscle fur-
ther contribute to cardioprotective effects.5 Transcrip-
tional responses to exercise training have been studied 
in murine models, with differential expression of genes 
involved in fatty acid and glucose metabolism, contractile 
function, extracellular matrix remodeling, cell cycle regu-
lation, protein ubiquitination, and proteasome activity. The 
PI3K/Akt (phosphoinositide 3-kinase/protein kinase B), 
mTOR (mammalian target of rapamycin), IGF-1 (insulin- 
like growth factor 1), and ERK5 (extracellular sig-
nal–regulated kinase) 5 signaling pathways have been  
implicated in exercise-induced physiological hypertrophy.

Although the effects of exercise in the normal heart are 
well described, relatively less is known about how these 
responses might differ in inherited heart disorders where the 
myocardial substrate is fundamentally abnormal. Genotype- 
specific differences in susceptibility to mechanical and 
metabolic stress, as well as patient-specific clinical risk 
factors and phenotype severity, could influence the tip-
ping point between benefit versus harm. These issues will 
be discussed in subsequent sections of this review.

HYPERTROPHIC CARDIOMYOPATHY
HCM is characterized by left ventricular (LV) hypertro-
phy that arises in the absence of significant increases 
in afterload due to conditions, such as hypertension or 
aortic valve stenosis. The hallmark histological features 
of HCM include cardiomyocyte hypertrophy, myofibril 
disarray, and interstitial fibrosis. It is the most common 
genetic cardiomyopathy, occurring in 1:200 to 1:500 
people. Phenotypic manifestations exist on a spectrum 
of severity of myocardial hypertrophy, fibrosis, diastolic 
dysfunction, normal or supranormal systolic function, LV 
outflow tract obstruction (LVOTO), and arrhythmia pro-
pensity. This disorder is clinically important due to its high 
prevalence and significant complications of SCD and HF.

HCM is caused by variants in genes that encode 
cardiac sarcomere-related proteins, with genetic test-
ing yielding a positive result in 30% to 40% of sporadic 
cases and >60% of those with familial disease.6 Recent 
gene curation has identified 14 genes with definitive 
or strong evidence for pathogenicity, encoding proteins 

in the thick filament (MYBPC3, MYH7, MYL2, MYL3), 
thin filament (TNNT2, TNNI3, TNNC1, TPM1, ACTC1, 
FHOD3), Z-disk (ACTN2, CSRP3), M-band (ALPK3), and 
sarcoplasmic reticulum (PLN).7 Four additional genes 
classified as having moderate evidence encode proteins 
involved in functions of the M-band (TRIM63), sarcoplas-
mic reticulum (JPH2), intermediate filaments (KLHL24), 
and mitochondria (MT-TI). Variants in MYH7 (β-myosin 
heavy chain) and MYBPC3 (cardiac myosin binding pro-
tein C) account for 70% to 80% of genotype-positive  
cases.6 Substantial progress has been made in elucidating 
the molecular basis of HCM, particularly for MYH7 variants. 
During diastole, nonmutated sarcomeres enter a super-
relaxed state where myosin heads adopt an interacting- 
heads motif.8 MYH7 variants disrupt interacting-heads 
motif formation, shifting myosin molecules into a weakly 
actin-bound state, that is, the disordered relaxed state.9 
When in the disordered relaxed state, myosin and actin 
can bind and generate force leading to increased con-
tractility and impaired myocardial relaxation.9 The disor-
dered relaxed state consumes 5-fold greater ATP than 
the super-relaxed state, increasing myocardial ATP uti-
lization.8 Increased myocardial energy requirements and 
altered calcium (Ca2+) sensitivity trigger a cascade of 
downstream signaling pathways that promote hypertro-
phy and fibrosis. Another key feature of HCM is micro-
vascular dysfunction, the causes of which remain elusive.

Exercise intolerance and functional disability are impor-
tant sequelae of HCM. Aerobic capacity, quantified by 
VO2peak, is significantly reduced in patients with HCM.10 
Many experience debilitating exertional symptoms includ-
ing dyspnea, chest pain, and syncope. The causes of exer-
cise intolerance are multifactorial and interrelated, primarily 
stemming from cardiac limitation. Patients with HCM fail to 
appropriately augment cardiac output to meet metabolic 
demand, largely due to increased ventricular stiffness and 
impaired filling. Chamber stiffness is affected by both fiber 
stiffness and cavity geometry; increases in intrinsic fiber 
stiffness resulting from altered cross-bridging and fibrosis 
are further exacerbated by the increased chamber stiffness 
inherent in small cavity size.11 At higher heart rates, impaired 
LV filling undermines the ability to augment stroke volume 
leading to insufficient cardiac output and increased anaer-
obic metabolism, which contributes to fatigue and exer-
tional symptoms. Furthermore, LVOTO has heterogenous 
impacts on exercise capacity and exertional symptoms with 
the magnitude of gradient correlating poorly with functional 
limitation.10,12–16 In patients with latent LVOTO, diastolic 
dysfunction remains a key driver of exercise limitation.16 
However in some patients with significant resting obstruc-
tion, there is impaired systolic augmentation in response to 
exercise that further reduces exercise capacity.10 Exercise 
intolerance and functional disability contribute significantly 
to HCM-related morbidity and are strongly correlated with 
lower quality of life.17 This underscores the importance of 
targeting physical capacity as a key therapeutic strategy in 
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HCM management. Studies exploring the impact of exer-
cise in HCM are summarized in Table S1.

Acute Risks During Exercise in Patients with 
HCM
HCM is a widely publicized cause of SCD in athletes, 
leading to concerns about the safety of exercise par-
ticipation (Figure 1). Physiological perturbations during 
exercise contributing to acute arrhythmic risk in the 
context of an abnormal myocardium include increased 
catecholamine release, sympathetic-vagal imbalance, 
and electrolyte imbalance. In addition, increased myo-
cardial energetic demands inherent in HCM may cause 
energy depletion during mechanical stress sufficient to 
impair Ca2+ reuptake and raise cytosolic Ca2+ concen-
trations, potentially promoting sustained arrhythmias.18 
HCM-related microvascular dysfunction may promote 
myocardial hypoperfusion and ischemia during exer-
tion.19–21 Although most adverse events in HCM occur 
at rest, adjustments for relative time exposure suggest 

that there is an increased risk during exercise. One 
population-based study quantified the absolute risk of 
SCD during exercise as low (0.064 per 1000 HCM 
person-years), although this was 10× higher than in 
the general population. Due to advances in prophy-
lactic intervention, SCD in patients with HCM is now 
rare (0.32%/y) and death due to HF or other cardiac 
causes is relatively more common.22 Indeed, the major-
ity of patients will survive to later age, experiencing 
morbidity related to exercise intolerance and unrelated 
conditions.

Acute exercise can temporarily exacerbate symp-
toms in patients with HCM, including exertional syncope 
related to LVOTO, arrhythmia, or inappropriate systolic 
blood pressure response.13,23 The mechanisms under-
lying the latter are poorly understood but may include 
excessive vasodilation due to overstimulation of mecha-
noreceptors associated with LVOTO-related increased 
LV afterload. Only one interventional trial has reported 
an episode of exercise-induced syncope.24 Trials that 
excluded patients with a history of exertional syncope or 

Figure 1. Risks, benefits, and unresolved questions for exercise effects in inherited cardiomyopathies.
Key points from published studies are summarized here (Tables S1 through S3 for full description of studies). ACM indicates arrhythmogenic 
cardiomyopathy; AF, atrial fibrillation; DCM, dilated cardiomyopathy; G+P−, genotype-positive phenotype-negative; HCM, hypertrophic 
cardiomyopathy; LV, left ventricular; LVOT, left ventricular outflow tract; NYHA, New York Heart Association; SCD, sudden cardiac death; and VA, 
ventricular arrhythmias.
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hypotension have reported no instances of syncope dur-
ing supervised exercise training.

Is Exercise Training Harmful in Patients with 
HCM?
There is speculation that sustained mechanical, meta-
bolic, or ischemic stress due to exercise training might 
also be proarrhythmic or exacerbate disease progression. 
Recent evidence suggests that the risk of major adverse 
cardiac events (MACE) with exercise training in HCM is 
low. Several interventional trials of moderate-to-vigorous 
exercise training reported no MACE over periods of up 
to 19 months.25–30 In a study of 188 MYBPC3 variant- 
positive individuals (55% affected), there was an 
increased risk of malignant ventricular arrhythmia (VA) in 
those engaged in high-dynamic activities (>22 MET-h/
wk, adjusted hazard ratio of 3.26 compared with 7.5 
MET-h/wk), but no association between overall activity 
level and MACE.31 These observations suggested that 
high-dynamic activities like running and soccer might 
pose greater risk. In contrast, a study of athletes with 
mild HCM observed no serious arrhythmias or death over 
an average 4.5 years follow-up.32 Some of these differ-
ences between studies may be attributable to the inclu-
sion of low-risk phenotypes. It should be noted that due 
to the rarity of MACE, most studies are relatively under-
powered for safety outcomes.

Data from interventional studies suggest that  
moderate- and high-intensity aerobic exercise training 
does not adversely impact LV hypertrophy, severity of 
LVOTO, levels of HF biomarkers, or nonfatal sustained 
arrhythmias.24–28 Although these trials may not be long 
enough to capture potential complications, observational 
studies have also provided reassurance of long-term safety. 
One study found no association between lifetime vigorous 
activity and either increased LV hypertrophy or VA bur-
den,33 while another showed no correlation between early 
life vigorous exercise and arrhythmia risk.34 In addition, 
patients with HCM classified as active or sedentary based 
on self-reported lifetime physical activity had no differ-
ences in New York Heart Association (NYHA) functional 
classification, symptom severity, nonsustained ventricular 
tachycardia burden, or implantable cardioverter defibrilla-
tor (ICD) implantation.35 A prospective study of patients 
with MYBPC3 variants similarly found no increased risk 
of HF across activity quartiles.31 Although Aengevaeren et 
al36 reported no difference in LV hypertrophy between the 
most sedentary and most active tertiles, they observed a 
higher burden of nonsustained ventricular tachycardia in 
the most active tertile. Notably the most active group had 
a greater prevalence of a family history of SCD, potentially 
indicative of a more severe familial disease.36 Athletes with 
HCM were found to have lower maximal LV wall thick-
ness and reduced LVOTO when compared with nonath-
letic patients with HCM, though this may reflect selection 

bias.37 A long-term follow-up study of athletes found no 
difference in the incidence of new symptoms or arrhyth-
mias between those who continued exercising and those 
who detrained postdiagnosis.38

The impact of chronic exercise on myocardial fibrosis 
remains uncertain. To date, no prospective interventional 
trials have assessed myocardial fibrosis before and after 
exercise training. Some retrospective observational stud-
ies have found no association between lifetime accumu-
lation of physical activity, including vigorous or competitive 
exercise, and increased fibrosis burden,33–35,37 whereas 
others have reported positive correlations between exer-
cise volumes and fibrosis.35,36 Elevated T2 mapping on 
cardiac magnetic resonance imaging has been linked to 
postexercise troponin elevation, suggesting patients with 
active disease or myocardial edema may be more sus-
ceptible to myocardial injury and fibrosis.39

Benefits of Exercise Training in Patients with 
HCM
There is emerging evidence that the benefits of chronic 
exercise outweigh the acute risks of single exercise 
bouts for most patients with HCM (Figure 1). Epidemio-
logical data have shown progressive declines in all-cause 
and cardiovascular mortality across increasing tertiles of 
physical activity engagement in patients with HCM.40 
Supervised exercise interventions can lead to modest 
but clinically significant improvements in VO2peak (1–2 
mL/kg per minute) across various HCM populations, 
including those with obstructive and nonobstructive 
disease.24–26,29,30 Nonrandomized cardiac rehabilitation 
programs have also conferred meaningful performance 
gains in maximal exercise testing among functionally 
impaired patients with HCM.27,28 Exercise capacity is a 
significant prognostic marker in HCM, with VO2peak 
increments of 1 mL/kg per minute associated with a 
21% attenuation in mortality and heart transplant risk.41 
Some interventions employing cardiopulmonary exer-
cise testing have reported improvements in ventilatory 
thresholds24 and ventilatory efficiency (VE/VCO2 [minute 
ventilation divided by expired carbon dioxide] slope),29,30 
both of which are robust prognostic indicators in HCM.41 
In healthy adults, improvements in aerobic capacity due 
to exercise result from enhancements in both cardiac 
and peripheral adaptations although the cardiovascu-
lar responses to exercise in patients with HCM remain 
incompletely understood. Most interventional trials did 
not show overt changes in cardiac morphology or car-
diac functional indices, suggesting that improvements in 
VO2peak may primarily result from peripheral adaptations 
in oxygen utilization rather than direct cardiac remodel-
ing.24–26 An exception to this was a study where improve-
ments in exercise capacity were paralleled by improved 
cardiac output and pulmonary wedge pressures in non-
obstructive patients with HCM.30
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Several studies have shown that exercise can improve 
NYHA classification and quality of life. In symptomatic and 
functionally limited patients with HCM, Klempfner et al28 
found that 50% of patients improved their NYHA class 
after a cardiac rehabilitation program with no instances 
of progression. A combined exercise and dietary inter-
vention in obese patients with HCM showed that 30% 
improved their NYHA class, although 3 patients devel-
oped systolic dysfunction.29 Other observational studies 
showed no difference in NYHA class between active 
and sedentary patients with HCM.35,36 Similarly, although 
some exercise interventions improved quality of life mea-
sures,25,27,30 others did not show significant benefit.24,26

The impact of exercise training on LV wall thickness 
is variable. One study showed a reduction in interven-
tricular septal diameter after 5 months of moderate- or 
high-intensity exercise,26 whereas another reported no 
change.27 Observational studies in more active patients 
with HCM have noted potential improvements in LV 
chamber stiffness, indicated by larger LV volumes and 
superior diastolic function.33,37 Exercise interventions 
have not consistently replicated these findings. The only 
study to report increased LV volumes did so in response 
to high-intensity interval training and only one metric of 
diastolic function was improved.26 This suggests that 
current exercise protocols may not provide a sufficient 
stimulus for cardiac remodeling, or that larger ventricular 
volumes in active individuals result from selection bias 
rather than direct training effects.

Insights from Animal Studies of HCM
Murine studies suggest that the intensity and timing 
of exercise intervention are important determinants of 
efficacy.42 There is some evidence that exercise may 
worsen disease progression under certain conditions. 
For example, mice with MYL3 variants demonstrated 
increased heart size, reactivation of the fetal gene pro-
gram, increased collagen deposition, and attenuated 
Ca2+ sensitivity when subjected to an intense exercise 
regime, including twice daily exposures to exercise,43 
whereas transgenic mice overexpressing TNNI3 showed 
no physiological adaptation to exercise training.44

In transgenic mice expressing a mutant myosin 
heavy chain, exercise initiated before phenotype onset 
afforded the greatest benefit, preventing hypertrophic 
progression, myocardial disarray, and fibrosis formation. 
This was associated with the downregulation of hyper-
trophic signaling via the calcineurin-NFAT (nuclear factor 
of activated T cell) pathway and a lack of induction of 
markers of pathological hypertrophy including MYH7 and 
NPPA expression.45 In contrast, initiation of exercise sub-
sequent to phenotype onset failed to reverse hypertro-
phy or rescue derangement of myocyte architecture and 
fibrosis, and NPPA expression was only attenuated.46 
Exercise reversed proapoptotic signaling by restoring 

reduced CREBH (cAMP-responsive element-binding 
protein H) activity, and apoptotic activity to wild-type 
levels. In a murine model of the human MYH7 p.R403Q 
variant, early exercise intervention failed to improve LV 
morphology (including septal thickness), stroke volume, 
diastolic function, or myocardial fibrosis but did result in 
increased exercise capacity, smaller left atrial size and 
reduced expression of extracellular matrix genes.47 A 
further murine model harboring a MYL2 p.E22K muta-
tion found that exercise training improved transcriptional 
profiles associated with hypertrophic and fibrotic signal-
ing.48 Importantly, not all components of these pathways 
were impacted by exercise which may explain why habit-
ual exercise does not consistently correlate with fibrosis 
severity in human studies.

Extrapolations from a murine model of HF with pre-
served ejection fraction may provide further insights. In 
these mice, exercise altered titin phosphorylation, which 
is predicted to increase myocardial compliance and 
improve diastolic function.49 In addition, exercise upregu-
lated proteins involved in Ca2+ handling, potentially reduc-
ing Ca2+-dependent pathological signaling. It is unclear 
if these mechanisms would similarly affect patients with 
HCM with sarcomere mutations.

Variables: Exercise Intensity, Genotype, Disease 
Trajectory, and Patient Capacity
How much exercise is too much for patients with HCM? 
New evidence suggests that progressively increasing 
exercise intensity up to 85% of heart rate reserve or 95% 
maximal heart rate is well tolerated,24,26,28 whereas vigor-
ous exercise was shown to be equivalent to nonvigorous 
activity with respect to MACE.50 Conclusions about exer-
cise effects are confounded by a lack of standardization 
for exercise dose. For example, in the latter study, the 
threshold for classification as a vigorous exerciser was 
remarkably low, with just one hour of vigorous activity in 
the previous year meeting the criteria. Although METs 
were used to quantify intensity, this is a generalized mea-
sure and may not accurately reflect individual physiologi-
cal responses. For a severely limited patient with HCM, 
even daily activities could qualify as vigorous exercise. 
Another analysis using similar definitions found vigorous 
exercise was not associated with increased arrhythmia 
or fibrosis and could result in superior diastolic func-
tion (although causation cannot be inferred due to study 
design).33 A potential for vigorous exercise to elicit supe-
rior adaptions over moderate-intensity training was tested 
in a randomized control trial.26 They found a trend towards 
greater VO2peak improvement that did not reach signifi-
cance potentially due to the heterogeneous and modest 
magnitude of response. Studies of athletes with HCM 
have found no increased incidence of new symptoms, 
arrhythmias, or MACE-free survival in athletes who con-
tinued to participate in competitive exercise.38
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Although genetic heterogeneity of HCM complicates 
risk assessment, limited available data do not support 
genotype-specific exercise restrictions. Genotype was 
not correlated with adverse outcomes in a large multi-
center prospective cohort,50 nor with SCD during vigor-
ous activity.51 In addition, genotype did not significantly 
influence exercise response in an intervention trial.25 
However, certain genotypes may theoretically pose 
greater risks. MYH7 variants impose a higher energy 
cost of contraction compared with MYBPC3 variants,52 
potentially increasing susceptibility to exercise-induced 
energetic depletion and associated detriment (arrhyth-
mogenesis and hypokinesis). Moreover, isogenic induced 
pluripotent stem cell models of thick filament mutations 
suggest that energetic stress may trigger increased 
cytotoxic activity.53 Larger gene-specific cohort studies 
are needed before genotype-based exercise recommen-
dations can be made.

Concerns that exercise in genotype-positive phenotype- 
negative (G+P−) individuals could enhance disease 
penetrance are not validated by current observational 
data.31,36 In fact, greater exercise volume accumulated 
during youth correlated with better diastolic function in 
middle-aged patients with HCM, irrespective of hypertro-
phy severity.34 This is reflected in current clinical guide-
lines, which no longer recommend strenuous exercise 
restrictions in G+P− subjects.

Exercise interventions have been conducted primar-
ily in lower-risk patients with HCM leading to guide-
line changes that no longer restrict strenuous activity 
in these individuals.54 Studies incorporating higher-risk 
patients, including those with ICDs or a history of sud-
den cardiac arrest found moderate-intensity exercise 
was not associated with increased nonfatal arrhythmias 
or MACE.25,29 The presence of LVOTO did not result in 
adverse events or influence the ability to derive benefit 
from exercise.25–27,29 Patients with severe LVOTO gradi-
ents, high fibrosis burden, extreme LV hypertrophy, or 
prior exertional syncope remain in higher-risk groups 
requiring careful assessment (Figure 1).

Exercise echocardiography and cardiopulmonary exer-
cise can be valuable tools in guiding physical activity rec-
ommendations in individual patients.55 Clinical exercise 
testing can identify patients for whom exercise may pose 
greater risks, such as those exhibiting ischemic changes, 
exercise-induced arrhythmia, or inappropriate blood 
pressure responses. These findings can inform shared 
decision-making around physical activity levels and guide 
risk mitigation strategies, including the need for super-
vised exercise interventions. Exercise echocardiography 
is particularly useful for detecting latent LVOTO under 
physiologically relevant conditions and offers insights 
into mechanisms of functional limitation, whereas cardio-
pulmonary exercise testing provides objective measures 
of functional capacity. Given the challenges of achieving 
true maximal effort in clinical populations, submaximal 

indices derived from cardiopulmonary exercise testing, 
such as ventilatory efficiency and anaerobic thresholds, 
offer unique insights for prognostication, tailoring exer-
cise intensity, and evaluating the functional impact of 
therapeutic interventions in HCM.

Exercise and HCM: Current Status
The theoretical risk that exercise may promote pathologi-
cal manifestations and enhance disease severity in HCM is 
now contested by evidence from human studies and murine 
models. Although acute exercise may transiently exacer-
bate symptoms and increase the risk of malignant VA or 
SCD, the latter events are rare. Emerging data from high-
quality interventional trials confirms the safety and benefits 
of supervised exercise interventions for most patients with 
HCM. Accordingly, contemporary American and European 
clinical guidelines endorse low-to-moderate-intensity exer-
cise to improve cardiorespiratory fitness, functionality, and 
subjective well-being (Figure 2).1,56 Available evidence pro-
vides reassurance that vigorous and competitive exercise 
does not reduce MACE-free survival in lower-risk individu-
als, leading to guideline updates that do not recommend 
blanket restriction of vigorous activity and competitive sport 
in patients with HCM (class III evidence).56 A universally 
safe upper threshold of activity in all patients with HCM is 
unlikely to exist given the stochastic nature of events, and 
exercise recommendations should ideally be individualized. 
There are many unresolved questions, including the long-
term effects of exercise on phenotypic features and in dif-
ferent genotype groups (Figure 1).

ARRHYTHMOGENIC CARDIOMYOPATHY
ACM encompasses a phenotypic spectrum characterized 
by VA, an increased risk of SCD, and variably progres-
sive structural and functional ventricular changes.57 His-
torically considered a disease of the right ventricle (RV), 
more widespread use of cardiac magnetic resonance 
has challenged this assumption, with recognition of 
biventricular and LV-dominant subtypes. Although overall 
disease prevalence is low (1:2500 to 1:5000), ACM is an 
important cause of SCD in young adults and athletes.58 
Disease penetrance is higher in males, with phenotype 
onset typically between the second and fourth decades. 
Electrical abnormalities and arrhythmias often precede 
gross structural changes, and many patients are only 
diagnosed after a life-threatening event or familial cas-
cade screening.58 Arrhythmic events are often triggered 
by exercise or adrenergic stress, leading to the establish-
ment of preparticipation screening in young athletes in 
several countries in an attempt to reduce mortality and 
increase disease detection.

Desmosomal gene mutations have been causally 
linked to ACM, with genetic testing identifying patho-
genic variants in 50% to 70% of probands.59 These 
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genes encode desmosomal or intercalated disc proteins 
that provide crucial mechanical and electrometabolic 
coupling between cardiomyocytes, including PKP2, JUP, 
DSP, DSC2, and DSG2. Inheritance is typically autosomal 
dominant with reduced penetrance and variable expres-
sivity. Heterozygous truncating PKP2 variants are the 
most commonly identified cause of classical RV-dominant 
ACM, with RV dilation and high rates of VA. Truncating 
DSP variants are increasingly recognized in association 
with LV-dominant ACM, with a distinct ring-like pattern of 
late gadolinium enhancement on cardiac magnetic reso-
nance, recurrent episodes of inflammatory myocarditis, 
and higher rates of HF when compared with PKP2 muta-
tion carriers.60 With the broadening of ACM to include 
LV-dominant and biventricular phenotypes, variants in 
numerous nondesmosomal genes have additionally been 
identified. Gene recuration has demonstrated that only 3 
genes currently have sufficient evidence for pathogenic-
ity: TMEM43, PLN, and DES.61 Nondesmosomal variants 
are found in only 2% to 3% of patients and are associ-
ated with highly penetrant and arrhythmogenic forms of 
ACM with greater LV involvement and rates of SCD as 
high as 50% in TMEM43 variant-positive males.62 In vitro 

studies indicate that nondesmosomal gene variants also 
result in reduced or dysfunctional desmosomal proteins, 
suggesting shared mechanistic pathways.48,63 A minor-
ity of patients with ACM (1%–16%) carry multiple vari-
ants. These patients typically demonstrate more severe 
phenotypes with earlier disease onset and worse clinical 
outcomes.60

In at least 30% of patients with a clinical diagnosis of 
ACM, an underlying genetic variant is unable to be iden-
tified.59 These gene-elusive patients present at an ear-
lier age, are less likely to have a family history of ACM 
and typically perform greater volumes of high-intensity or 
endurance exercise when compared with carriers of des-
mosomal variants.64 ACM in gene-elusive patients could 
result from unidentified single rare variants, polygenic 
influences, or epigenetic factors.65 Rather than having 
a primary genetic cardiomyopathy, it has been proposed 
that at least some of these individuals might have a form 
of ACM that is induced by high-intensity endurance exer-
cise. This theory reconciles the high rates of ACM seen 
among athletes and the relatively benign course of desmo-
somal variant carriers in general population cohorts. The 
concept of exercise-induced ACM is further supported by 

Figure 2. Impact of exercise intensity and myocardial substrate on risk of adverse outcomes.
Heat maps representing graded risk (green=low, red=high) of exercise in inherited cardiomyopathies based upon current guideline 
recommendations, with additional genotype-specific recommendations from relevant studies (Tables S1 through S3). Individualized exercise 
prescription is recommended as risk-benefit thresholds will vary between patients and over an individual’s lifetime. Patients with higher-risk 
clinical features or poor baseline physical fitness may require more conservative exercise recommendations. With expert assessment and 
regular reassessment, most patients can enjoy the benefits of regular exercise. ACM indicates arrhythmogenic cardiomyopathy; CMR, cardiac 
magnetic resonance; DCM, dilated cardiomyopathy; G+P−, genotype-positive phenotype-negative; GDMT, guideline-directed medical therapy; 
HCM, hypertrophic cardiomyopathy; LA, left atrium; LGE, late gadolinium enhancement; LV, left ventricular; LVEF: LV ejection fraction, LVH, LV 
hypertrophy; LVOT, LV outflow tract; NSVT, nonsustained ventricular tachycardia; PVC, premature ventricular contraction; SCD, sudden cardiac 
death; and VA, ventricular arrhythmias.
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studies in wild-type mice where high- intensity endurance 
exercise led to an ACM-like phenotype.66

Adverse Effects of High-Exercise Burden in 
ACM
Exercise has a well-documented association with the 
development of clinical disease and adverse outcomes 
in ACM. Studies investigating exercise effects are sum-
marized in Table S2. In particular, high-intensity exercise 
has been associated with earlier phenotype onset,67 
increased VA,68–74 greater degrees of ventricular remod-
eling, and HF (Figure 1).67,69,75–77 Although the majority of 
individuals will restrict exercise after an ACM diagnosis, 
those who continue high or very high-intensity exercise 
are at increased risk of life-threatening VA.78,79 Conse-
quently, despite a lack of prospective or randomized 
clinical data, current clinical practice guidelines strongly 
advise individuals with overt ACM to avoid participation in 
high-intensity exercise or competitive sports (Figure 2).57

These recommendations extend to G+P− individu-
als in whom high-intensity exercise has been associated 
with an increased likelihood of meeting ACM diagnos-
tic criteria65,71 and the development of VA or HF.71,80 In 
studies of ACM mutation carriers, individuals who under-
took endurance exercise developed symptomatic dis-
ease a decade earlier than their sedentary counterparts, 
and were more likely to experience adverse events.67,68 
Observational studies of G+P− athletes have also shown 
that ongoing high-intensity sports participation is associ-
ated with more rapid phenotype development, HF, and 
increased arrhythmia burden.81

Genotype Differences in Exercise Risk in ACM
Current data suggest that exercise risk in ACM varies 
with different genotypes.81 Desmosomal gene variants, 
particularly PKP2, are associated with increased arrhyth-
mias, earlier disease penetrance due to accelerated 
structural defects, and impaired exercise-induced trophic 
remodeling.67,81,82 Median exercise exposure before ACM 
diagnosis can be relatively modest in PKP2 carriers (14.5 
MET-h/wk) with greater rates of LV impairment. Exercise 
restriction after ACM diagnosis reduced the risk of future 
arrhythmic events67 but did not lead to improvement in 
LV function.83 Similarly, DSP variant-positive individuals 
have elevated rates of inflammatory myocarditis epi-
sodes, LV impairment, and arrhythmias among patients 
with a previous history of moderate- to vigorous-intensity 
exercise.83,84

There is limited information on exercise risk in nondes-
mosomal ACM. TMEM43 variant-positive individuals seem 
to be a particularly vulnerable group, with a prospective 
study of 80 patients demonstrating a high prevalence of 
LV involvement and arrhythmias. Exercise exposure ≥9.0 
MET-h/d before ICD insertion was associated with an 

adjusted 9.1-fold increased risk of appropriate ICD dis-
charge.85 In contrast, PLN variants were not associated 
with increased disease penetrance or structural progres-
sion with high-intensity exercise.86 However, other stud-
ies of PLN variant-positive individuals have revealed that 
most episodes of VA and SCD occur during exercise,87 
underscoring the need for caution. Perhaps mirroring the 
role of exercise in disease pathogenesis, gene-elusive 
or patients with exercise-induced ACM receive relatively 
greater protection from high-intensity exercise restriction 
compared with patients with an identifiable mutation.88

Are Low or Moderate Exercise Levels Safe in 
ACM?
Although high-intensity exercise is known to be harmful 
in patients with ACM, there are limited data on the effects 
of lower exercise levels. Ruiz-Salas et al89 examined a 
high-risk cohort of patients with definitive ACM who had 
undergone ICD implantation. They noted earlier onset 
arrhythmic events in individuals who undertook high- and 
moderate-intensity activity, compared with low-intensity 
activity suggesting a possible dose-dependent relation-
ship between disease penetrance and exercise intensity. 
Building on this finding, Lie and colleagues explored the 
relationship between exercise intensity, exercise duration, 
and adverse events in a cohort of patients with ACM and 
G+ relatives.69 They found that high-intensity exercise 
(>6 METs) remained a strong and independent predictor 
of VA after adjustment for exercise duration (odds ratio, 
3.8 [95% CI, 1.3–11.0]; P<0.001). Longer-duration and 
low-intensity exercise were not associated with adverse 
outcomes suggesting that this may be a safe alternative 
to complete exercise restriction.

Given heterogeneous definitions of exercise and the 
lack of standardized activity assessment between stud-
ies, it is difficult to conclude whether there is a specific 
threshold of exercise exposure that could be consid-
ered safe in patients with ACM. Randomized studies are 
unlikely to be forthcoming given ethical concerns and as 
such, cautious inferences may need to be drawn from 
observational studies assessing the impact of low-to-
moderate-intensity exercise. Such studies have gener-
ally been reassuring, demonstrating similar risk profiles 
between patients who undertook low-to-moderate- 
intensity exercise, and their sedentary counterparts.90 
Bosman et al70 demonstrated that although exercise 
dose (METs×duration) was associated with VA during 
follow-up, no significant increase in risk was seen at 
exercise doses of 15 to 30 MET-h/wk, grossly equiva-
lent to 150 minutes of low-to-moderate-intensity (3–6 
MET) exercise. Similarly, 2 PKP2-predominant cohorts 
demonstrated that restriction of exercise to below the 
American Heart Association recommendations for 
minimum activity (650 MET-h/y) was not associated 
with harm. Below a <650 MET-h/y threshold, only 5% 
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of patients developed ACM, compared with 50% of 
patients exercising above this threshold.91 G+P− indi-
viduals who exercised at or below 650 MET-h/y had 
favorable outcomes with lower rates of ACM diagnosis 
and no episodes of sustained VA.71 In higher-risk and 
nondesmosomal cohorts, participation in recreational 
activities did not increase the risk of VA postcatheter 
ablation92 nor accelerate symptom onset or increase 
the risk of arrhythmias or death.68 These findings sug-
gest that not all exercise is equal and that most patients 
with ACM may be able to enjoy the benefits of recre-
ational exercise without excessive risk. Moving toward 
greater precision, a recent study by Ramos-Maqueda 
et al93 utilized accelerometer-measured physical activ-
ity and 30-day Holter monitoring to assess the relation-
ship between physical activity and rapid rate VA. In this 
LV-dominant, nondesmosomal cohort, physical activity 
of light- and moderate-intensity (average activity 290 
min/d, including 21 min/d moderate-intensity exercise) 
was not associated with VA.

Exercise and ACM Pathophysiology
A mechanistic understanding of why exercise might 
accelerate ACM is incomplete. For desmosomal gene 
variants, initial hypotheses proposed that fragile or dys-
functional intercalated disc proteins were relatively more 
susceptible to acute increases in mechanical stress 
during exercise, resulting in increased cardiomyocyte 
apoptosis94,95 and subsequent myocardial fibro-fatty 
replacement.59 Because the RV is exposed to relatively 
greater wall stress during exercise, hemodynamic differ-
ences were thought to explain why the RV was preferen-
tially prone to exercise-induced effects.

ACM animal models have demonstrated ultrastruc-
tural abnormalities of desmosomes and intercalated 
discs.96–98 However, arrhythmogenicity can precede iden-
tifiable histological changes.99 This has been attributed to 
loss of desmosomal integrity due to gap junction remod-
eling,100 reduced connexin 43 expression,101–103 cardiac 
sodium channel dysfunction,104 and abnormal intracellu-
lar Ca2+ handling.105 Recent studies have demonstrated 
alterations in connexin 43 expression levels in forced 
versus voluntary exercise models of ACM. Interestingly, 
connexin 43 expression was shown to be increased by 
low-to-moderate-intensity exercise106 but reduced by 
high-intensity and endurance exercise.107 Overall, these 
alterations result in dysregulated Ca2+ handling with 
increased spontaneous Ca2+ release and susceptibility 
to VA with triggered activity,108 such as adrenergic stimu-
lation during intense exercise. In several murine mod-
els, treatment with preload-reducing therapies restored 
connexin 43 phosphorylation levels109,110 and prevented 
exercise-induced cardiac dysfunction emphasizing the 
relationship between hemodynamic stress and arrhyth-
mogenicity in ACM.

Several downstream pathways are perturbed in ACM 
hearts. Under normal conditions, exercise results in 
increased activity of the Wnt (wingless-related integra-
tion site)/β-catenin and Hippo/YAP (Yes-associated 
protein) pathways and PPARγ (peroxisome proliferator-
activated receptor gamma).111,112 These responses are 
important for cellular repair, cardiomyocyte hypertro-
phy, and autophagy. Desmosomal dysfunction results in 
increased nuclear translocation of plakoglobin and com-
petitive suppression of the Wnt/β-catenin pathway.113 
Concurrent inhibition of the Wnt/β-catenin pathway and 
activation of Hippo/YAP and TGF (transforming growth 
factor) β is proposed to drive myofibroblast differentia-
tion and fibro-fatty myocardial replacement.114,115 Exper-
imental studies support a profibrotic role of increased 
TGFβ signaling in both JUP knockout116 and PKP2 
knockdown mice.117 TMEM43 murine models also dem-
onstrate reduced PPARγ activity with disturbed fatty 
acid/lipid utilization, adipocyte infiltration, and exercise 
intolerance.118 Interestingly, treatment of DSP-deficient 
zebrafish with a Wnt/β-catenin agonist prevented the 
developed of an ACM phenotype119 and inhibition of 
glycogen synthase kinase-3β, a downstream regula-
tor of the Wnt/β-catenin pathway, reversed abnormal 
remodeling and prevented cardiac dysfunction in murine 
DSG2 and TMEM43 models.120,121 Endurance exercise 
is known to increase testosterone levels, and males are 
disproportionately probands, with earlier disease onset 
and more severe arrhythmic burden.60 In vitro models of 
PKP2-deficient cardiomyocytes demonstrate acceler-
ated lipogenesis and apoptosis in response to testos-
terone.122 These data suggest that increased androgen 
levels may contribute to exercise-induced disease pro-
gression in ACM.

Changes in transcriptional profiles have been found in 
animal ACM models.123 In wild-type mice, exercise was 
associated with downregulation of genes related to inter-
calated disc function, scaffolding proteins, and ion chan-
nel function, together with upregulation of genes involved 
in cellular respiration and mitochondrial metabolism. 
Induction of PKP2 deficiency resulted in further down-
regulation of desmosomal genes and increased apopto-
sis pathways suggestive of an abnormal cellular response 
to exercise and impaired desmosomal reserve.82,95  
Exercise-induced transcriptional changes can vary 
between genotypes.124 When compared with wild-type 
controls, differentially expressed genes in DSP-deficient 
mice predicted increased activation of inflammation and 
epithelial-mesenchymal transition and suppression of 
oxidative phosphorylation pathways. Exercise restored 
normal gene transcript levels in DSP-deficient mutants, 
with an overall reduction in cardiomyocyte apoptosis 
and preserved contractile function. Notably, exercise in 
this study was voluntary and at much lower levels when 
compared with murine studies showing the deleterious 
effects of endurance exercise.
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Exercise and ACM: Current Status
ACM-associated genetic variants affect the structure 
and function of cardiomyocyte desmosomes and inter-
calated discs, enhancing susceptibility to environmental 
stresses imposed during exercise. Bringing clinical and 
animal data together, there is a clear message that high-
intensity, endurance aerobic exercise is harmful in ACM. 
Current guidelines recommend avoidance of moderate-
to-high-intensity exercise in patients with ACM and 
avoidance of high-intensity exercise in G+P− individu-
als (Figure 2).1 Although no studies have directly shown  
disease- or genotype-specific benefits of exercise in 
ACM (Figure 1), observational data suggest that low-to- 
moderate-intensity exercise (<650 MET-h/y) is likely 
safe for most affected patients and G+P− relatives 
(Figure 2). There are many unresolved unanswered 
questions, including the long-term effects of low-to-
moderate-intensity exercise in ACM, and how sex and 
genotype influence exercise risk assessment (Figure 1).

DILATED CARDIOMYOPATHY
DCM is a myocardial disorder characterized by LV dil-
atation and systolic dysfunction (LV ejection fraction 
[LVEF]<50%) that is unexplained solely by abnormal 
loading conditions or coronary artery disease.1 Preva-
lence estimates range from 1:250 to 1:2500 people. 
There are numerous causes of DCM that can be genetic 
or acquired. Genetic testing identifies rare disease- 
causing variants in 30% to 40% of DCM cases.1 Distin-
guishing between genetic and acquired causes of DCM 
is not always straightforward and multiple risk factors 
may coexist in individual cases.

Although numerous DCM-associated genes have 
been reported in the literature, <20 of these have robust 
evidence of pathogenicity.125 These core genes encode 
proteins with pleiotropic roles in cardiomyocyte biology, 
including the structure and function of the sarcomere 
(MYH7, TNNC1, TTNT2, TTN), cytoskeleton (DES, 
FLNC), and nucleus (LMNA, RBM20), as well as ion 
channel function (PLN, SCN5A) and protein homeosta-
sis (BAG3). Single-cell sequencing has shown that there 
is some convergence of transcriptional pathways due 
to end-stage HF in hearts from patients with different 
genetic causes of DCM; however, 20% to 40% of dif-
ferentially expressed genes are genotype-specific and 
associated with distinctive cell states.126 Given this het-
erogeneity of myocardial substrates, it seems likely that 
there might be varying tolerance to exercise. For exam-
ple, genetic defects that impair the structural stability 
of cardiomyocytes might be less resistant to increased 
mechanical stress when compared with genes with non-
structural functions.

Regular physical activity has been shown to improve 
functional capacity and quality of life in clinically stable 

patients with DCM (Figure 1).127 In a meta-analysis of 18 
studies, moderate-intensity continuous exercise was also 
found to improve LVEF, with the greatest benefits seen 
after long-term (>6 months) training.128 Exercise data to 
date have mainly been gathered from nonselected DCM 
cohorts; few studies have specifically evaluated exercise 
effects on disease progression and arrhythmia risk in the 
subset of patients with genetic DCM. It is noteworthy 
that abnormal responses to exercise testing have been 
proposed as a marker of early disease.129–132 Studies of 
exercise in DCM are summarized in Table S3.133 Many of 
these have focused on 2 of the most clinically important 
DCM genes, LMNA and TTN.

Exercise and LMNA Variants
The LMNA gene encodes the intermediate filament pro-
teins, lamins A and C (lamin A/C), which are key compo-
nents of the nuclear lamina, a dense fibrillar network that 
lines the inner nuclear envelope. Lamin A/C is required for 
coupling the nuclear envelope to the cytoskeleton through 
interactions with the LINC (linker-of-nucleoskeleton- 
and-cytoskeleton) complex, desmin, and actin.134 These 
connections regulate 3-dimensional tension within car-
diomyocytes and provide a structural scaffolding that 
links the nucleus to intracellular elements and the extra-
cellular matrix. Lamin A/C is also a major determinant of 
mechanical properties of the nucleus and transcriptional 
regulation. Loss of lamin A/C results in a range of defects 
including impaired sensing and responding to mechanical 
stress, mis-localization of cytoskeletal proteins (eg, des-
min intermediate filaments, actin, microtubules, connexins 
40/43), impaired nuclear-cytoplasmic transport, altered 
cellular signaling (mitogen-activated protein kinase 
[MAPK], ERK, Jun-N-terminal kinase, Akt/mTOR, Wnt/
β-catenin, TGFβ, Hippo/YAP, and platelet-derived growth 
factor [PDGF] pathways), oxidative stress, premature 
senescence, apoptosis, and impaired protein turnover.135

LMNA variants have been associated with a suite of 
cardiac, skeletal muscle, adipose tissue, and neurological 
disorders, collectively termed laminopathies. The cardiac-
predominant phenotype typically presents with conduc-
tion abnormalities and atrial arrhythmias from the second 
to third decades with the subsequent development of 
DCM. LMNA variants are one of the clinically significant 
causes of familial DCM and often have a progressive 
downhill course with high rates of malignant VA and 
HF.136 Consequently, LMNA was the first DCM disease to 
be incorporated into clinical decision-making algorithms 
for ICD implantation and early consideration of heart 
transplantation is recommended.137 Various potential 
therapies targeting downstream signaling pathways have 
been evaluated in murine and zebrafish models.138,139 
One of the most promising of these, a selective p38a 
MAPK inhibitor, ARRY-371797, progressed to phase 
2 and 3 clinical trials.140 Despite an absence of safety 
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concerns, the phase 3 trial of ARRY-371797, REALM-
DCM (https://www.clinicaltrials.gov; Unique identifier: 
NCT03439514), was prematurely terminated due to 
lack of efficacy.140 To date, effective disease-modifying 
therapies for LMNA-related DCM are lacking.

Exercise participation in patients with LMNA variants 
has generally been discouraged, due to concerns about 
accelerated disease progression and heightened arrhyth-
mic risk. These recommendations are based mainly on 
longitudinal retrospective observational data in cohorts 
of genotyped patients with DCM and their relatives. In 
a study of 164 G+ individuals (64% affected), a self-
reported history of highly dynamic competitive sports for 
periods of 10 years or more was found to be an inde-
pendent predictor of MACE including HF and SCD.136 
Another study of 69 LMNA variant-positive probands and 
relatives (48% with DCM) evaluated self-reported exer-
cise patterns from the age of seven years until genetic 
diagnosis.141 All subjects undertook recreational activi-
ties only and none were elite athletes. Active individuals, 
defined by cumulative lifetime exercise greater than the 
median (ie, 4160 hours), had larger cardiac dimensions 
than expected for the level of exercise, and were more 
likely to have DCM, ICD implantation, and atrial fibrilla-
tion, compared with nonactive individuals. There was a 
significant inverse relationship between lifetime exercise 
exposure and LVEF.

Murine studies have enabled different threshold levels 
of exercise to be more closely evaluated. In male het-
erozygous Lmna-deficient (Lmna+/−) mice subjected to 
a 6-week period of moderate treadmill exercise training 
(17 m/min, 40 minutes, 5 d/wk), LV size, and contrac-
tion were relatively more preserved when compared with 
nonexercised mice.

These benefits were not seen in Lmna+/− mice that 
underwent intermittent high-intensity exercise training 
(22 m/min, 40 minutes, 2 d/wk).142 In contrast, cardiac 
function was significantly worse in heterozygous Lmn-
adelK32 mice after 5 weeks of strenuous treadmill exer-
cise (21 m/min, 45 minutes, 5 d/wk).143 The effects of 
endurance swimming exercise (90 min/d, 5 d/wk) were 
evaluated in mice carrying the human LMNA p.R225X 
variant (LmnaR225/WT). After 18 weeks, LVEF was mark-
edly depressed in nonexercised LmnaR225/WT mice but 
was similar to the wild type in the exercised LmnaR225/

WT mice.144 Collectively, current data suggest that higher 
intensity and longer duration of exercise have cumulative 
wear-and-tear effects that accelerate LMNA-associated 
cardiac dysfunction. However, murine findings suggest 
that delineation of cardioprotective levels of exercise 
might be achievable.

Exercise and Truncating TTN Variants
The TTN gene encodes the giant sarcomeric protein, 
titin. Closely integrated with thick and thin filaments, 

titin constitutes a third filament network that contrib-
utes to sarcomere structure and function in cardiac and 
skeletal muscle. The titin A-band, comprised of super 
repeats of immunoglobulin-like and fibronectin-type 3 
domains, runs along the outer surface of the thick fila-
ment backbone where it interacts with myosin. A-band 
titin is relatively inextensible and is a determinant of thick 
filament length.145 The titin I-band, containing a series of 
extensible elements including PEVK (proline-glutamate-
valine-lysine)-repeats and immunoglobulin-like domains, 
contributes to the elasticity and passive muscle proper-
ties. Posttranslational modifications and changes in the 
ratio of the various titin isoforms provide further dynamic 
regulation of myocardial passive stiffness.146 It has been 
proposed that titin has a fundamental role in the Frank-
Starling mechanism whereby increases in LV filling vol-
ume lead to increased contraction. This is thought to 
result from I-band mediated passive force that increases 
thick filament strain and the number of myosin heads 
interacting with actin.145 The proximal and distal ends 
of titin are tethered to the Z-disk and M-band regions, 
respectively, where they interact with multiple structural 
and signaling proteins. These regions, together with 
key nodes along the titin protein, such as the cardiac- 
specific N2B unique sequence, PEVK, and thymidine 
kinase domains, are important for sensing and respond-
ing to mechanical stress.147

Truncating variants in the TTN gene (TTNtv) are the 
most frequent genetic cause of DCM, being present in 
10% to 20% of sporadic cases and up to 25% of fami-
lies.148 The cardiac phenotype associated with TTNtv is 
predominantly characterized by DCM, although cardiac 
arrhythmias are not uncommon. Atrial fibrillation is seen 
in approximately one-third of patients with DCM and 
may precede DCM onset. Although nonsustained ven-
tricular tachycardia occurs in ≥50% cases, malignant 
VA is mostly seen in patients with severe impairment of 
systolic function. The age of onset of DCM can be vari-
able, ranging from early adolescence to late adult life. 
Clinical risk factors such as alcohol excess, pregnancy, or 
anthracycline chemotherapy, can result in earlier disease 
onset. Overall, the clinical course in TTNtv-related DCM 
is usually less severe than that associated with LMNA 
mutations. Of note, patients with TTNtv-related DCM 
often respond well to HF therapies, displaying LV reverse 
remodeling.

Whether exercise has detrimental or beneficial effects 
in TTNtv-related DCM is unclear. Studies in zebraf-
ish models have shown that TTNtv are associated with 
blunted inotropic responses to adrenergic stimulation 
and hemodynamic load.149 These observations provide 
evidence of mechanical insufficiency and identify factors 
that could impact negatively on exercise performance. In 
a recent study, exercise histories were obtained from 117 
patients with TTNtv-related DCM and G+ relatives.150 
Individuals who engaged in vigorous activity for >4 h/wk 
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for a minimum of 6 years had similar arrhythmia preva-
lence and LVEF when compared with those with lower 
activity levels. The effects of vigorous exercise training 
versus usual care were further evaluated in a group of 
13 patients with TTNtv-related DCM.151 The 8-week 
bicycle training protocol (30 minutes, 3/wk, 70% heart 
rate reserve) was well tolerated with no adverse events. 
Several favorable end points were achieved, including 
increases in VO2peak, resting cardiac output, total blood 
volume, total hemoglobin mass, and LVEF. This study 
was limited by the small sample size and relatively short  
follow-up period. Nevertheless, the data suggest that 
exercise could be a useful nonpharmacological method 
for LV reverse remodeling.

Exercise and DCM: Current Status
Current exercise guidelines for DCM vary with the pres-
ence/absence of symptoms and severity of LV dysfunc-
tion (Figure 2). For most patients with mild or moderate 
DCM, exercise is regarded as beneficial. High or very 
high-intensity exercise is not recommended in patients 
with severe DCM or those with high-risk clinical features 
including extensive myocardial fibrosis, past history of 
malignant VA, or high-risk genotypes. These guidelines 
have mainly been extrapolated from studies in unselected 
DCM cohorts with limited evidence for exercise effects 
in genetic DCM.

Available data suggest that the relative propensity 
for risk versus benefit in genetic DCM varies with exer-
cise dose and the underlying genotype; however, further 
investigation is needed (Figure 1). High-risk genotypes 
are mainly considered with respect to arrhythmia propen-
sity and include DCM genes, such as LMNA, and ACM 
genes that present with LV-dominant disease, such as 
TMEM43. Other highly arrhythmic DCM genes that could 
potentially be added to this list include FLNC (truncating 
variants), RBM20, and SCN5A. An equivalent list of geno-
types that might be more vulnerable to exercise-induced 
disease progression has yet to be defined. Animal 
data suggest, however, that even in identified high-risk 
groups, such as LMNA-positive probands and relatives, 
beneficial levels of exercise may be found. Consideration 
of exercise factors, genetic factors, and patient factors 
is needed to optimize exercise recommendations in indi-
vidual DCM cases.

The efficacy of personalized exercise prescription in 
patients with DCM is currently under investigation in the 
activeDCM trial, a prospective randomized intervention 
trial with a 12-month follow-up.152 The study end points 
will be assessed in 3 risk groups, based on clinical and 
genetic risk characteristics. Studies such as activeDCM 
are critically needed and will provide a valuable evidence 
base for refinement of exercise guidelines. Whether 
exercise training can protect against DCM onset has yet 
to be investigated.

LIMITATIONS AND FUTURE DIRECTIONS
The current evidence base regarding exercise effects 
in inherited cardiomyopathies has several limitations. 
Exercise levels vary throughout an individual’s lifetime 
and retrospective assessments are inherently prone to 
recall bias and regression to the mean. Definitions of 
exercise, inclusion of nonsports-related physical activ-
ity and study end points, are heterogeneous in clinical 
cohorts which limit comparison between registries. Few 
studies use objective measures of exercise intensity or 
duration, and prospective long-term or randomized data 
are lacking. The increased use of wearable activity moni-
tors and uptake of exercise tracking applications provide 
new opportunities to gather exercise data with unprec-
edented detail and accuracy. The majority of clinical data 
comes from large established registries which introduces 
a degree of bias. Disproportionate representation of cer-
tain genotypes limits the ability to generalize findings to 
less common genotype groups. Registry cohorts also 
include a high proportion of probands, which may exag-
gerate risk when generalized to G+P− family members 
given that the majority of those detected via cascade 
screening have a relatively more benign clinical course 
compared with probands. Further, women are underrep-
resented in most registry cohorts and sex-sensitive anal-
ysis is difficult. Most genotype-specific data come from 
animal models; however, these often fail to recapitulate 
human disease phenotypes precisely, and translation of 
findings should be cautious.

A one-size-fits-all approach is unlikely to be universally 
successful and exercise recommendations should ideally 
be tailored to individual patient capacity and risk factors 
(Figure 3). We propose a model in which exercise dose is 
closely titrated to myocardial vulnerability, determined by 
underlying genetic defects, phenotypic features, disease 
stage, and patient factors such as age, sex, comorbidi-
ties, and drug therapies (Figure 3). Testing this model at 
scale is challenging and will require thoughtful design of 
clinical trials. Implementation of exercise as therapy will 
also require a better understanding of factors that influ-
ence patient compliance.

CONCLUSIONS
Exercise is a profound modifier of cardiac structure, 
function, and electrophysiology properties with the 
potential to significantly impact the clinical course 
of inherited cardiomyopathies. Depending upon the 
phenotype and genotype, exercise may ameliorate or 
accentuate pathology with the effect dependent upon 
exercise intensity and duration. Evolving evidence 
strongly argues against a one-size-fits-all approach to 
exercise but, rather, that every patient deserves a tai-
lored exercise program and an understanding that evi-
dence continues to evolve.
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